z^3-(1+i)z+i=0

Simple and best practice solution for z^3-(1+i)z+i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^3-(1+i)z+i=0 equation:


Simplifying
z3 + -1(1 + i) * z + i = 0

Reorder the terms for easier multiplication:
z3 + -1z(1 + i) + i = 0
z3 + (1 * -1z + i * -1z) + i = 0

Reorder the terms:
z3 + (-1iz + -1z) + i = 0
z3 + (-1iz + -1z) + i = 0

Reorder the terms:
i + -1iz + -1z + z3 = 0

Solving
i + -1iz + -1z + z3 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add 'z' to each side of the equation.
i + -1iz + -1z + z + z3 = 0 + z

Combine like terms: -1z + z = 0
i + -1iz + 0 + z3 = 0 + z
i + -1iz + z3 = 0 + z
Remove the zero:
i + -1iz + z3 = z

Add '-1z3' to each side of the equation.
i + -1iz + z3 + -1z3 = z + -1z3

Combine like terms: z3 + -1z3 = 0
i + -1iz + 0 = z + -1z3
i + -1iz = z + -1z3

Reorder the terms:
i + -1iz + -1z + z3 = z + -1z + -1z3 + z3

Combine like terms: z + -1z = 0
i + -1iz + -1z + z3 = 0 + -1z3 + z3
i + -1iz + -1z + z3 = -1z3 + z3

Combine like terms: -1z3 + z3 = 0
i + -1iz + -1z + z3 = 0

The solution to this equation could not be determined.

See similar equations:

| y=1/5(10)-8 | | y=1/5(15)-1 | | (-x^2+2x)(3x-2)(2x^2+5)= | | 3x-y+z=23 | | 1/7(-x+49)=4(1/7x+4) | | y=1/2(15)-1 | | 2x+3y+z=7 | | 7-3y=-2 | | 7(6x-1)+x=23 | | x-3(5)=-2 | | 4x-9y+5=0 | | X-2/5=18 | | 5=(3x)/5+1/5 | | 2x+13y=-8 | | X/4+3=16 | | y+6(4)=6 | | 2k=q-2z | | loge(x-4)=(logex)-4 | | ln(x-4)=(lnx)-4 | | y+6(-2)=6 | | 9=(3x)/5+(1/5) | | -16x^2+12x-1.76=0 | | 3x+7y-9=0 | | 1/2(x+1)=7 | | 4t-6=19-t | | x^4=(1/5) | | 15(x+1)=255 | | 4-2/7x=12 | | 32=4(x-9) | | 4=2(1/2)+5 | | (4w+7v)(4w-7v)= | | (6x^2+5y^2-4)-(4x^2+5y^2-9)= |

Equations solver categories